INTEGRATED CIRCUITS

DATA SHEET

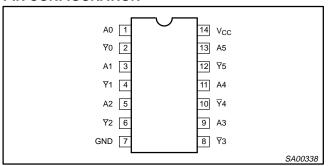
74LVT143.3V Hex inverter Schmitt trigger

Product specification

1996 Aug 28

IC24 Data Handbook

74LVT14


DESCRIPTION

The 74LVT14 is a high-performance BiCMOS product designed for V_{CC} operation at 3.3V. They are capable of transforming slowly changing input signals into sharply defined, jitter free output signals. In addition, they have greater noise margin than conventional inverters. Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive-going and negative-going input threshold (typically 600mV) is determined internally by resistor ratios and is insensitive to temperature and supply voltage variations.

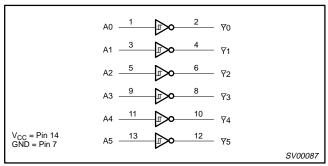
QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25°C; GND = 0V	TYPICAL	UNIT		
t _{PLH} t _{PHL}	Propagation delay An to Yn	$C_L = 50pF;$ $V_{CC} = 3.3V$	3.2 3.0	ns		
C _{IN}	Input capacitance	V _I = 0V or 3.0V	3	pF		
I _{CCL}	Total supply current	Outputs low; V _{CC} = 3.6V	1.5	mA		

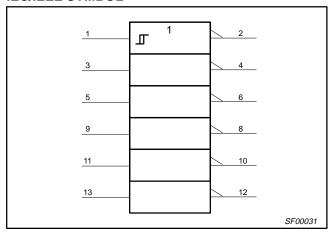
PIN CONFIGURATION

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 3, 5, 9, 11, 13	An	Data inputs
2, 4, 6, 8, 10, 12	₹n	Data outputs
7	GND	Ground (0V)
14	V _{CC}	Positive supply voltage


FUNCTION TABLE

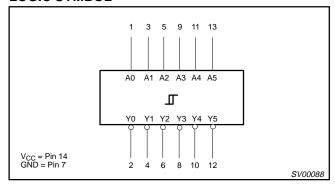
INPUTS	OUTPUT
Dn	Qn
L	Н
Н	L


NOTES:

H = High voltage levelL = Low voltage level

LOGIC DIAGRAM

IEC/IEEE SYMBOL


ORDERING INFORMATION

OTTO IT OTTO IT				
PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
14-Pin Plastic SO	-40°C to +85°C	74LVT14 D	74LVT14 D	SOT108-1
14-Pin Plastic SSOP	-40°C to +85°C	74LVT14 DB	74LVT14 DB	SOT337-1
14-Pin Plastic TSSOP	-40°C to +85°C	74LVT14 PW	74LVT14 PWDH	SOT402-1

3.3V Hex inverter Schmitt trigger

74LVT14

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V _I < 0	-50	mA
V _I	DC input voltage ³		−0.5 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	Output in Off or High state	−0.5 to +7.0	V
	DC autaut aurorat	Output in High state	-32	^
IOUT	DC output current	Output in Low state	64	mA mA
T _{stg}	Storage temperature range		-65 to 150	°C

NOTES:

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	UNIT	
STIMIBUL	FARAWEIER	MIN	MAX	UNIT
V _{CC}	DC supply voltage	2.7	3.6	V
VI	Input voltage	0	5.5	V
V _{IH}	High-level input voltage	2.0		V
V _{IL}	Low-level Input voltage		0.8	V
I _{OH}	High-level output current		-20	mA
l _{OL}	Low-level output current		32	mA
Δt/Δν	Input transition rise or fall rate; Outputs enabled		10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the
device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to
absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.

^{3.} The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

74LVT14

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions Voltages are referenced to GND (ground = 0V)

			L							
SYMBOL	PARAMETER	TEST CONDITIONS	Temp = -	∙40°C to	+85°C	UNIT				
			MIN	TYP ¹	MAX					
V _{T+}	Positive-going threshold	V _{CC} = 3.3V	1.5	1.7	2.0	V				
V _{T-}	Negative-going threshold	V _{CC} = 3.3V	0.9	1.1	1.3	V				
ΔV_{T}	Hysteresis	V _{CC} = 3.3V	0.4	0.6		V				
V _{IK}	Input clamp voltage	V _{CC} = 2.7V; I _{IK} = -18mA			-1.2	V				
		$V_{CC} = 2.7 \text{ to } 3.6 \text{V}; I_{OH} = -100 \mu\text{A}$	V _{CC} -0.2							
V_{OH}	High-level output voltage	$V_{CC} = 2.7V; I_{OH} = -6mA$	2.4			V				
		$V_{CC} = 3.0V; I_{OH} = -20mA$	2.0							
		$V_{CC} = 2.7V; I_{OL} = 100\mu A$	0.2							
V_{OL}	Low-level output voltage	V _{CC} = 2.7V; I _{OL} = 24mA			0.5	V				
		$V_{CC} = 3.0V; I_{OL} = 32mA$			0.5					
=	Input leakage current	$V_{CC} = 0 \text{ or } 3.6V; V_I = 5.5V$			10	μΑ				
'1	input loakage outfork	$V_{CC} = 3.6V$; $V_I = V_{CC}$ or GND			±1	μΛ				
I _{OFF}	Output off current	$V_{CC} = 0V$; V_I or $V_O = 0$ to 4.5V			±100	μΑ				
Іссн	Quiescent supply current	V_{CC} = 3.6V; Outputs High, V_{I} = GND or V_{CC} , I_{O} = 0			0.02	mA				
I _{CCL}	Quiocochi ouppiy outfort	V_{CC} = 3.6V; Outputs Low, V_{I} = GND or V_{CC} , I_{O} = 0		1.5	3					
Δl _{CC}	Additional supply current per input pin ²	V_{CC} = 3V to 3.6V; One input at V_{CC} –0.6V, Other inputs at V_{CC} or GND			0.2	μА				
C _I	Input capacitance	V _I = 3V or 0		3		pF				

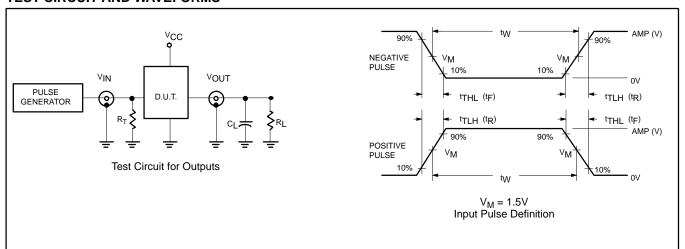
- All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.
 This is the increase in supply current for each input at the specificed voltage level other than V_{CC} or GND

AC ELECTRICAL CHARACTERISTICS

SYMBOL		TEOT					
	PARAMETER	TEST CONDITION	V _C	$_{C}$ = 3.3V \pm 0.	3V	V _{CC} = 2.7V	UNIT
			MIN	TYP	MAX	MAX	
t _{PLH} t _{PHL}	Propagation delay An to Yn	Waveform 1	1.0 1.0	3.8 3.2	5.7 4.5	6.9 4.1	ns

AC WAVEFORMS

 $V_M = 1.5V$, $V_{IN} = GND$ to 2.7V



Waveform 1. Propagation delay for inverting outputs

3.3V Hex inverter Schmitt trigger

74LVT14

TEST CIRCUIT AND WAVEFORMS

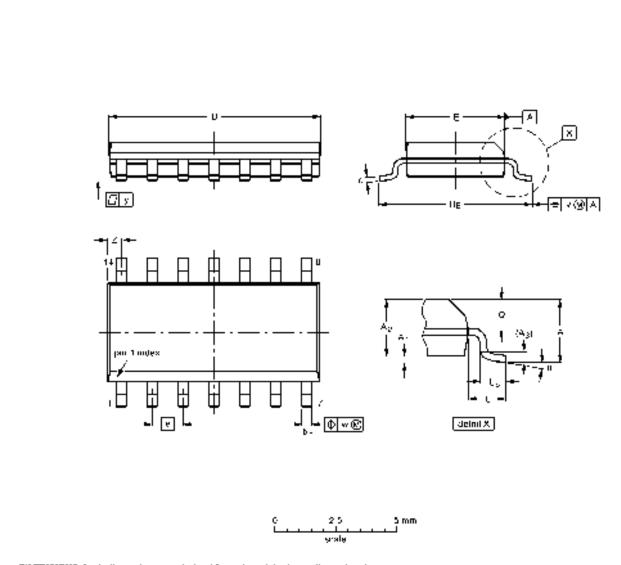
DEFINITIONS

 R_L = Load resistor; see AC CHARACTERISTICS for value.

 $C_L = Load$ capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

 R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.

FAMILY	IN	INPUT PULSE REQUIREMENTS											
	Amplitude	Rep. Rate	t _W	t _R	t _F								
74LVT	2.7V	≤10MHz	500ns	≤2.5ns	≤2.5ns								


SV00022

1996 Aug 28 5

74LVT14

SO14: plastic small outline package; 14 leads; body width 3.9 mm

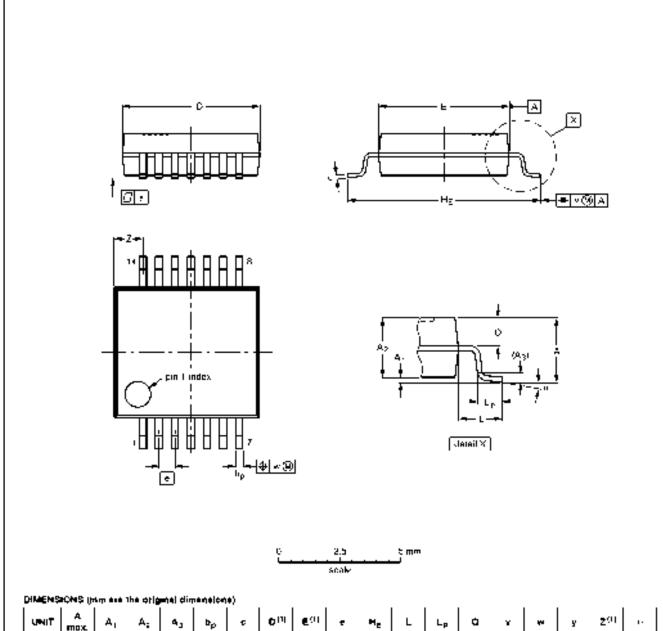
SOT108-1

DIMENSIONS (Inch dimensions are derived from the original mm dimensions)

UNIT	A max	4,	Az	43	PP	ė	o m)	€III	•	HE	١	Lp	Ģ	>	4	y	Z (1)	1.
mm	1.75	0.25 0.10	145 125	0.25	0.45 0.00	0.25 0.19	8.75 8.∞	4.0 3.0	1 27	52 58	į.	1.0 U,a	0.7 0.6	0 25	0.25	01	07 00	g°
inches		00048 00039		0.61		0.0049 0.0075		0 1t 0 15	0.050	023 023	0.041		0.028 0.024	0 01	0.01	0.004	0+Q9 0012	్

Note

1. Healistor metal profusions of 0.15 mm maximum per side are not included


OUTLINE		REFER	EUROPEAN	IBBUE DATE			
YERBION	IEC	1EDE¢	EITJ	PROJECTION	IBBUE DATE		
SOT108-1	076E06S	M5-012AB		□ ◎	91 08 19 95-01-29		

1996 Aug 28 6

74LVT14

SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm

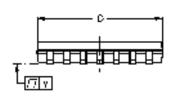
SOT337-1

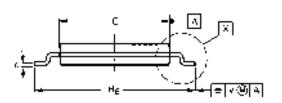
UNIT	A mox.	Α,	A.	4,	Þр	ε	Olul	€01		HE	L	Lp	à	٧	-	y	201	1.	
mm	20	0.21 0.05	180 165	0.25	0.08 0.25	0.20 0.09	00 64	5.4 5.2	0.65	70 76	125	1.03 0.63	0.9 0.7	0.2	0.13	9.1	1 ¢ 0 9	O. A.	

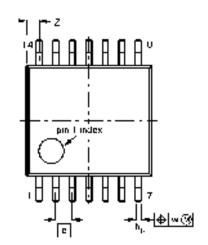
Nove

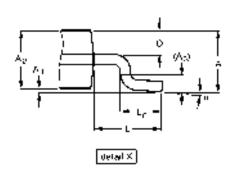
1. Plastic or metal profusions of 0.25 mm maximum particle are not included

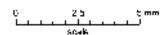
	OUTLINE		REFER	IENÇEŞ	EUROPEAN	IBBUE DATE
	YERBION	IEC	JEDE¢	EIT1	PROJECTION	IBOUE DATE
	90 1 0074		MO-150AB			95 82 94 96-01-19


1996 Aug 28 7


3.3V Hex inverter Schmitt trigger


74LVT14


TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm


SOT402-1

DIMENSIONS (mm are the original cimenalons)

UNIT	A XEM	4,	Α,	۵,	b _p	٠	ьm	€ /21	•	H _e	L	L _P	a	v	w	¥	Z (0)	"	
mm	1.10	0.15 0.05	0.03 0.80	0.25	0.00 0.19	07	5.1 4.9	4.5 a,y	055	66 02	1.0	0.75 0.59	0.4 0.3	02	0 13	0.1	0.72 0.38	es Os	

Notes

- 1. Plastic or metal profitusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead provisions of 0.25 mm maximum per side are not included

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
YERSION	IEC	JEDEC	EITÌ		PROJECTION	ISSUE DATE	
SQT402-1		MO-150			€∃�	- 94 07 12 95-14-04	

3.3V Hex inverter Schmitt trigger

74LVT14

NOTES

3.3V Hex inverter Schmitt trigger

74LVT14

DEFINITIONS						
Data Sheet Identification	Product Status	Definition				
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.				
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Phillips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.				
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.				

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act.

© Copyright Philips Electronics North America Corporation 1996
All rights reserved. Printed in U.S.A.